菠菜老平台集合网
旧版入口| 学校主页| English| 加入收藏 | 设为首页

师资队伍

teaching staff

热点文章

站内搜索

讲师

当前位置: 首 页 > 师资队伍 > 制冷与低温工程系 > 讲师 > 正文
姓 名 常华伟 性 别
职 称 讲师 毕业学校 菠菜老平台集合网
个人主页
联系方式
邮 箱 changhuawei@hust.edu.cn
通讯地址 菠菜老平台集合网清洁能源大楼N604
个人资料简介
常华伟,男,博士,湖北省自然科学基金创新群体“高效快速响应燃料电池关键技术”项目核心成员。2017年获制冷与低温工程博士学位,2017年6月至2019年5月从事博士后科学研究,2019年6月入职菠菜老平台集合网从事教学与科研工作。主要研究方向为氢能与燃料电池技术、分布式能源系统、低温流体传热与仿真技术。
截至目前,主持国家自然科学基金项目2项(面上项目、青年项目),国家重点研发计划子课题2项,湖北省“尖刀”技术攻关工程项目1项,中国博士后科学基金项目2项(特别资助、一等面上),湖北省博士后科技活动项目1项(一等资助),国家重点实验室开放课题3项,横向课题3项;参与国家重点研发计划、国家自然科学基金、湖北省自然科学基金等课题多项。近年来,以第一作者/通讯作者在Applied Energy、Energy Conversion and Management、Energy、Renewable Energy、Journal of Power Sources、Applied Thermal Engineering、International Journal of Hydrogen Energy等期刊上发表SCI论文25篇,其中,中科院一区论文10篇,ESI高被引论文2篇.
课题组鼓励并培养学生的创新思维,既重视相关基础理论研究,也注重培养学生的动手能力。课题组实验平台和实验仪器完善,科研经费充足,学习氛围融洽,工作内容充实有趣,科研成果丰硕。欢迎相关专业背景的学生报考本课题组的研究生!

教育及工作经历

    2008.9-2012.6    菠菜老平台集合网        热能与动力工程        学士
    2012.9-2017.6    菠菜老平台集合网        制冷及低温工程        博士
    2017.6-2019.5    菠菜老平台集合网        环境科学与工程        博士后
    2019.6至今        菠菜老平台集合网        菠菜老平台集合网    讲师

研究方向

    1.氢能与燃料电池技术,主要包括:双极板优化设计,多孔电极内的传热传质,燃料电池高效水热管理,燃料电池低温存储与冷启动,面向无人机、无人船、便携式电源的燃料电池系统开发。本团队拥有丰富的燃料电池双极板及电堆的设计经验,具备单电池—电堆—燃料电池系统全链条的组装及测试平台。
    2.分布式能源系统,主要包括:可再生能源制氢技术(绿氢技术),氢电耦合微网系统设计,基于可再生能源的冷热电联供系统设计与评价。本团队面向国家重大需求,承担多项相关国家级课题,拥有丰富的基础理论和技术积累,已设计出多套分布式能源系统,并开展示范运行。
    3.低温流体传热与仿真技术,主要包括:低温流体传热传质理论研究与数值仿真,冷能的高效回收等。

科研项目

    主持的科研项目如下:
    1.国家自然科学基金面上项目,面向无人机的空冷型质子交换膜燃料电池冷启动行为及衰退机制研究,2025/1~2028/12
    2.国家重点研发计划子课题,可再生能源电热氢联产系统仿真优化与集成设计,2022/12~2025/11
    3.湖北省“尖刀”技术攻关工程项目,XXXXX,2023/6~2026/5
    4.企业横向课题,制冷系统力学、减振仿真及优化,2024/6~2024/12
    5.国家自然科学基金青年项目,基于传热传质协同强化的燃料电池-太阳能冷热电联供系统动态特性研究,2019/1~2021/12
    6.国家重点研发计划项目(项目联系人),醇类重整制氢及冷热电联供的燃料电池系统集成技术,2020/11~2023/10
    7.国家重点研发计划子课题,XXXXX,2019/2~2022/2
    8.中国博士后科学基金特别资助,基于燃料电池的分布式能源系统动态特性研究及优化控制,2018/6~2019/5
    9.中国博士后科学基金面上项目(一等资助),基于太阳能和燃料电池的冷热电联供系统关键技术研究,2017/11~2019/5
    10.空调设备及系统运行节能国家重点实验室开放课题,基于动态负荷预测的空气源热泵全年能耗模型及舒适性研究,2018/9~2019/12
    11.航天低温推进剂技术国家重点实验室开放课题,液氢在输运管路中流动气化与换热特性研究,2015/1~2016/12
    12.航天低温推进剂技术国家重点实验室开放课题,低温液体输送过程的精确调节与控制研究,2014/11~2016/10
    13.横向课题,氦气对流换热热动力学理论研究,2021/6~2022/9
    14.横向课题,小型控温涂层除湿器的开发

代表性论文与专利

    1.Huawei Chang, Zhengbo Yang, Zhengkai Tu. Experimental study on the cold-start performance of a gas heating assisted air-cooled proton exchange membrane fuel cell stack. Renewable Energy 234 (2024) 121224.
    2.Fengyang Cai, Huawei Chang*, Zhengbo Yang, Zhengkai Tu. Experimental study on self-heating strategy of lithium-ion battery at low temperatures based on bidirectional pulse current. Applied Energy 354 (2024) 122232.
    3.Huawei Chang, Fengyang Cai, Zhengbo Yang, Chen Duan, Zhengkai Tu. Experimental study on the endplate effect on the cold-start performance of an open-cathode air-cooled proton exchange membrane fuel cell stack. International Journal of Hydrogen Energy 48(40) (2023) 15215–15228.
    4.Huawei Chang, Fengyang Cai, Xianxian Yu, Chen Duan, Siew Hwa Chan, Zhengkai Tu. Experimental study on the thermal management of an open-cathode air-cooled proton exchange membrane fuel cell stack with ultra-thin metal bipolar plates. Energy 263 (2023) 125724.
    5.Xianxian Yu, Huawei Chang*, Xiaobing Luo, Zhengkai Tu*. Experimental study on the dynamic performance of an air-cooled proton exchange membrane fuel cell stack with ultra-thin metal bipolar plate. International Journal of Hydrogen Energy 47(85) (2022): 36204–36215.
    6.Fengyang Cai, Huawei Chang*, Zhengbo Yang, Chen Duan, Zhengkai Tu. A rapid self-heating strategy of lithium-ion battery at low temperatures based on bidirectional pulse current without external power. Journal of Power Sources 549 (2022) 232138.
    7.Xianxian Yu, Huawei Chang*, Junjie Zhao, Zhengkai Tu*. Effects of anode flow channel on performance of air-cooled proton exchange membrane fuel cell. Energy Reports 8 (2022) 4443–4452.
    8.Houchang Pei, Bangbang Ma, Huawei Chang*, Chenguang Xiao, Zhengkai Tu*. Effect of cathode moisture condensation on temperature distribution characteristics of dead‐ended proton‐exchange membrane fuel cell stack. International Journal of Energy Research 46(4) (2022) 4770-4780.
    9.Yinan Qiu, Yao Zheng, Bing Shen, Na Wang, Gang Lei, Tianxiang Wang, Huawei Chang*, Shuiming Shu. Experimental investigation on the temperature and pressure characteristics of supercritical helium for liquid hydrogen pressurization. Journal of Energy Storage 46 (2022) 103895.
    10.Yao Zheng, Huawei Chang*, Yinan Qiu, Chen Duan, Jianye Chen, Hong Chen, Shuiming Shu. Prediction of liquid hydrogen flow boiling critical heat flux condition under microgravity based on the wall heat flux partition model. International Journal of Hydrogen Energy 45(11) (2020) 7141–7150.
    11.Biao Xiao, Huawei Chang*, Lin He, Shunan Zhao, Shuiming Shu. Annual performance analysis of an air source heat pump water heater using a new eco-friendly refrigerant mixture as an alternative to R134a. Renewable Energy 147(2020) 2013–2023.
    12.Huawei Chang, Xiangxiang Xu, Jun Shen, Shuiming Shu, Zhengkai Tu. Performance analysis of a micro-combined heating and power system with PEM fuel cell as a prime mover for a typical household in North China. International Journal of Hydrogen Energy 44(45) (2019) 24965–24976.
    13.Xueling Li, Huawei Chang*, Yao Zheng, Shuiming Shu. Thermal performance analysis of a novel linear cavity receiver for parabolic trough solar collectors. Applied Energy 237 (2019) 431–439.
    14.Yao Zheng, Huawei Chang*, Jianye Chen, Hong Chen, Shuiming Shu. Effect of microgravity on flow boiling heat transfer of liquid hydrogen in transportation pipes. International Journal of Hydrogen Energy 44(11) (2019) 5543–5550.
    15.Huawei Chang, Xiaoshu Xie, Yao Zheng, Shuiming Shu. Numerical study on the cavitating flow in liquid hydrogen through elbow pipes with a simplified cavitation model. International Journal of Hydrogen Energy 42 (2017) 18325-18332.
    16.Huawei Chang, Zhongmin Wan, Yao Zheng, Xi Chen, Shuiming Shu, Zhengkai Tu, Siew Hwa Chan, Rui Chen, Xiaodong Wang. Energy- and exergy-based working fluid selection and performance analysis of a high-temperature PEMFC-based micro combined cooling heating and power system. Applied Energy 204 (2017) 446–458.
    17.Yao Zheng, Jianye Chen, Yan Shang, Huawei Chang*, Hong Chen, Shuiming Shu. Numerical analysis of the influence of wall vibration on heat transfer with liquid hydrogen boiling flow in a horizontal tube. International Journal of Hydrogen Energy 42 (2017) 30804–30812.
    18.Huawei Chang, Zhongmin Wan, Yao Zheng, Xi Chen, Shuiming Shu, Zhengkai Tu, Siew Hwa Chan. Energy analysis of a hybrid PEMFC– solar energy residential micro-CCHP system combined with an organic Rankine cycle and vapor compression cycle. Energy Conversion and Management 142 (2017) 374-384.
    19.Huawei Chang, Zhongmin Wan, Xi Chen, Junhua Wan, Liang Luo, Haining Zhang, Shuiming Shu, Zhengkai Tu. Temperature and humidity effect on aging of silicone rubbers as sealing materials for proton exchange membrane fuel cell applications. Applied Thermal Engineering 104 (2016) 472–478.
    20.Huawei Chang, Can Xiang, Chen Duan, Zhongmin Wan, Yuting Liu, Yao Zheng, Yan Shang, Mengling Liu, Shuiming Shu. Study on the thermal performance and wind environment in a residential community. International Journal of Hydrogen Energy 41 (2016) 15868–15878.
    21.Chuan Sun, Yuting Liu, Chen Duan, Yao Zheng, Huawei Chang*, Shuiming Shu. A mathematical model to investigate on the thermal performance of a flat plate solar air collector and its experimental verification. Energy Conversion and Management 115 (2016) 43–51.
    22.Huawei Chang, Yuting Liu, Jinqiu Shen, Can Xiang, Sinian He, Zhongmin Wan, Meng Jiang, Chen Duan, Shuiming Shu. Experimental study on comprehensive utilization of solar energy and energy balance in an integrated solar house. Energy Conversion and Management 105 (2015) 967–976.
    23.Huawei Chang, Chen Duan, Ke Wen, Yuting Liu, Can Xiang, Zhongmin Wan, Sinian He, Changwei Jing, Shuiming Shu. Modeling study on the thermal performance of a modified cavity receiver with glass window and secondary reflector. Energy Conversion and Management 106 (2015) 1362–1369.
    24.Sinian He, Huawei Chang*, Xiaoqing Zhang, Shuiming Shu, Chen Duan. Working fluid selection for an Organic Rankine Cycle utilizing high and low temperature energy of an LNG engine. Applied Thermal Engineering 90 (2015) 579–589.
    25.Huawei Chang, Chen Duan, Xiangxiang Xu, Shuiming Shu, Zhengkai Tu. Technical performance analysis of a micro-combined cooling, heating and power system based on solar energy and high temperature PEMFC. International Journal of Hydrogen Energy 44(38) (2019) 21080–21089.
    26.李雪岭,常华伟*,段晨,徐祥祥,舒水明. 一种基于新结构的线性腔式太阳能集热器研究. 太阳能学报,2021, 42(2): 8-13.
    27.郑尧,常华伟*,陈虹,舒水明. 微重力下液氢流动沸腾的气泡脱离特性. 中南大学学报(自然科学版). 2021, 52(5): 1666-1672.
    28.商燕,常华伟*,郑尧,陈建业,舒水明. 水平振动管内液氢流动沸腾压降的数值模拟. 中南大学学报(自然科学版),2018, 49(9): 2337-2343.
    29.段晨,国占东,常华伟*,余涛,周爱民,杜喆华. 菱形传动斯特林发动机的相似设计及实验研究. 太阳能学报,2018, 39(4): 946-951.
    30.Xianxian Yu, Huawei Chang, Junjie Zhao, Zhengkai Tu, Siew Hwa Chan. Application of self-adaptive temperature recognition in cold-start of an air-cooled proton exchange membrane fuel cell stack. Energy and AI 9 (2022) 100155.
    31.Xueling Li, Renfu Li, Huawei Chang, Lijian Zeng, Zhaojun Xi, Yichao Li. Numerical simulation of a cavity receiver enhanced with transparent aerogel for parabolic dish solar power generation. Energy 246 (2022) 123358.
    32.Houchang Pei, Shaoyun Song, Zean Wang, Junjie Zhao, Huawei Chang, Zhengkai Tu. Effect of inner dehumidification technique on the performance of a dead-ended proton exchange membrane fuel cell stack. International Journal of Energy Research 46(5) (2022) 6436-6443.
    33.Junjie Zhao, Huawei Chang, Xiaobing Luo, Zhengkai Tu, Siew Hwa Chan. A novel type of PEMFC-based CCHP system with independent control of refrigeration and dehumidification. Applied Thermal Engineering 204 (2022) 117915.
    34.Junjie Zhao, Huawei Chang, Xiaobing Luo, Zhengkai Tu, Siew Hwa Chan. Dynamic analysis of a CCHP system based on fuel cells integrated with methanol-reforming and dehumidification for data centers. 309 (2022) 118496.
    35.Xing Zhou, Shanshan Cai, Xu Luo, Xiaobing Luo, Zhengkai Tu, Song Li, Huawei Chang. Electro-osmotic regeneration and its behavior in a dehumidification application. Applied Thermal Engineering 202 (2022) 117861.
    36.Chengyuan Gong, Yingmeng Du, Yi Yu, Huawei Chang, Xiaobing Luo, Zhengkai Tu. Numerical and experimental investigation of enhanced heat transfer radiator through air deflection used in fuel cell vehicles. International Journal of Heat and Mass Transfer 183 (2022) 122205.
    37.Lu Xing, Huawei Chang, Runqi Zhu, Ting Wang, Qifan Zou, Wentao Xiang, Zhengkai Tu. Thermal analysis and management of proton exchange membrane fuel cell stacks for automotive vehicle. International Journal of Hydrogen Energy 46(64) (2021) 32665–32675.
    38.Junjie Zhao, Xiaoming Huang, Huawei Chang, SiewHwa Chan, Zhengkai Tu. Effects of operating temperature on the carbon corrosion in a proton exchange membrane fuel cell under high current density. Energy Conversion and Management: X, 10(2021) 100087.
    39.Xueling Li, Huawei Chang, Lijian Zeng, Xianrong Huang, YichaoLi*, RenfuLi, ZhaojunXi. Numerical analysis of photothermal conversion performance of MXene nanofluid in direct absorption solar collectors. Energy Conversion and Management, 226 (2020) 113515.
    40.Jun Shen, Liang Xu, Huawei Chang, Zhengkai Tu, Siew Hwa Chan. Partial flooding and its effect on the performance of a proton exchange membrane fuel cell. Energy Conversion and Management 207 (2020) 112537.
    41.Houchang Pei, Kai Meng, Huawei Chang, Yonglin Zhang, Jun Shen, Zhengkai Tu, Siew Hwa Chan. Performance improvement in a proton exchange membrane fuel cell with separated coolant flow channels in the anode and cathode. Energy Conversion and Management 187 (2019) 76–82.
    42.Zhongmin Wan, Huawei Chang, Shuiming Shu, Yongxiang Wang, Haolin Tang. A Review on Cold Start of Proton Exchange Membrane Fuel Cells. Energies 7 (2014) 3179–3203.
    43.Chen Duan, Xinggang Wang, Shuiming Shu, Changwei Jing, Huawei Chang. Thermodynamic design of Stirling engine using multi-objective particle swarm optimization algorithm. Energy Conversion and Management 84 (2014) 88–96.

所获荣誉和奖励

    2024年1月            菠菜老平台集合网教学质量优秀奖            二等奖
    2021年10月            菠菜老平台集合网实验技术成果奖            三等奖